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Sweet-Parker at large S is too slow to be true...

» Sweet-Parker scalings do not hold for
because of the plasmoid instability!
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Breakdown of the Sweet-Parker model at large S

» Speed-up of the reconnection process due to plasmoid
formation has been shown by many other research groups
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Other important effects of the plasmoid formation

» The formation of plasmoids has other crucial implications:

o particle acceleration
o self-generated turbulent reconnection

Secondary
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20 30 40 50 60 7t 10 20
/d,

a
Drake et al., Nature 2006 Daughton et al., Nature 2011

» Sironi & Spitkovsky 2014 > Qishi et al. 2015

» Guo et al. 2014/15/16 » Huang & Bhattacharjee 2016

» Werner et al. 2016, ..... > ...
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An important issue to address

» We have seen that the formation of plasmoids plays a
crucial role in magnetic reconnection

BUT

» What is the dynamical picture behind the onset and
development of the plasmoid instability?
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» We will see why the previous knowledge of the plasmoid
instability was unsatisfactory

AND

» We will see what are the properties of this instability.
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Assuming a Sweet-Parker aspect ratio...

» Tajima & Shibata, Plasma Astrophysics (1997)
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(Note that the same result has been re-obtained 10 years later

by Loureiro et al., PoP 2007)
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But there is a problem with this result...
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The instability growth rate is too fast for large S-values!

Sweet-Parker sheets cannot form in large S plasmas!

Luca Com APS DPP Meeting 2017



Since in reality current sheets form over time...

We need to consider a time-evolving current sheet
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! Different recent theory: Uzdensky and Loureiro (2016)
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A plot to keep well in mind

» The plasmoid instability remains quiescent for a certain
time, and the fluctuation amplitude starts to grow only
when ymax7a > 0(1)

» Fast reconnection occurs at t > t,.
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Huang et al., ApJ (2017)
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General Theory [Comisso et al., PoP 2016]

Tearing modes become unstable at
different times and exhibit different ||
instantaneous growth rates v(k,t) ~

> k
» Their amplitude changes in time according to
w0 t) = (k) exp ([ (k0.
0
» Their evolution becomes nonlinear when
w(k,t) = 2@ > in(k,t) = [n7a2/(kvA)2]1/4.
B
zc{ =2w [20i
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General Theory [Comisso et al., PoP 2016]

A ok

» Principle of Least Time for the Plasmoid Instability, i.e.,
the mode of the plasmoid instability that emerges from the
linear phase is the one that traverses it in the least time.

» To implement this formulation, we introduce the function
F(k,t) := 6in(k,t) —w(k,t).
» Then, the least time principle is formulated as

F(k,t)l,,. =0,  dt/dk.=0.
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General Theory [Comisso et al., PoP 2016]

» From Egs. (1)-(1) we obtain the least time plasmoid Eqs:

with:
— 7 _ aft —
wo=2\/Y0  T=2 [l y(t)at, f=21 g=50

» From these Egs. it is possible to arrive at:

Y« (final growth rate) L./as (final aspect ratio)
ks (final wavenumber) t« (elapsed time from tg)
Oinx (final inner layer) Tp (time from Y(kxy ton) > 1/7)
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General Theory [Comisso et al., PoP 2016]

Until now the equations are very general.

Let’s try to be more specific...

» We are interested in the case where:

L ~ const., By = const., a(t) =aof(t).

» For the moment, we consider an exponentially thinning
current sheet (this will be generalized later) of the
form

a()” = (@ —ad)e ™/ 4@k, with g = 5712

» Here and in the following:

o lengths normalized by the current sheet half-length L
o time normalized by the Alfvén time 74 = L/va
o magnetic field normalized by the upstream field By
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General Theory [Comisso et al., PoP 2016]

» With some algebra we can see that there is a Transitional S

1 79 &g 4
s (5 5)

above which the plasmoid instability change behavior!
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General Theory [Comisso et al., PoP 2016]
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» The earlier scaling (black dashed line) is not applicable for
large-S plasmas.

» 4, can decrease with S because &n decreases with S
= less “space” to accelerate the perturbation growth
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General Theory [Comisso et al., PoP 2016]

» What about the disruption of the current sheet?
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» Current sheets disrupt before the Sweet-Parker state can
be achieved (as expected!)
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General Theory [Comisso et al., PoP 2016]

» To generalize the previous scaling laws, we consider the
generalized current thinning function

X
a(t)? = (a3 —a2.) <;> +a2, with Gee = 5~/
T+ 2t/x

» The final aspect-ratio (i) depends on the thinning process!
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General Theory [Comisso et al., PoP 2016]

» And finally... also the scaling laws of the plasmoid
instability at large S depend on the thinning process!
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Connections with experiments and observations

» Now we have a theory that can potentially predict the
onset of fast magnetic reconnection.

Opportunities to check the theory in the real world...

» The “easiest” quantities to check should be a, and fy.
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Concluding Remarks

» The scaling laws of the plasmoid instability are not simple
power laws, and depend on:

The Lundquist number (5)

The noise of the system ()

The characteristic rate of current sheet evolution (1/7)

The thinning process (x)

© ©6 o o

» In astrophysical systems, reconnecting current sheets break
up before they can reach the Sweet-Parker aspect ratio.

o The scaling laws of the plasmoid instability obtained
assuming a Sweet-Parker current sheet are inapplicable to
the vast majority of the astrophysical systems.

» How these scaling laws for the plasmoid instability affect
the turbulent energy cascade? (stay tuned)
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Supplement: plasma viscosity [arXiv:1707.01862]

Also plasma viscosity could be important in several systems.

» Plasma viscosity allows to extend the validity of the
Sweet-Parker based scalings to larger S-values (Sp 7).
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Supplement: plasma viscosity [arXiv:1707.01862]

» At large S, plasma viscosity allows to reach larger aspect
ratios of the reconnecting current sheets.
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